ANALYSIS OF MATHEMATICAL MODELS OF WELL DRILLING
Abstract
This article presents a comprehensive review of mathematical models used to describe well drilling processes under conditions of variable rock strength, which are characteristic of complex and heterogeneous geological formations. In environments where lithological transitions are accompanied by abrupt fluctuations in the strength and deformation properties of rocks, traditional approaches to predicting the rate of penetration and selecting optimal drilling parameters become insufficiently effective. Therefore, models that account for the dynamic behavior of the drill bit and its interaction with heterogeneous media gain particular relevance. The study considers four main classes of models: physical-mechanical, energy-based, kinematic, and empirical. Each group is systematized based on input parameters, predictive accuracy, adaptability to changing geological conditions, and practical applicability in engineering tasks. Special attention is given to modern intelligent approaches, such as neural networks, fuzzy logic systems, and hybrid algorithms capable of self-learning and real-time operation. The article concludes that building multi-component models combining physical principles with machine learning methods is essential. Such integration significantly improves the reliability of engineering forecasts, minimizes operational risks, and ensures the stability and efficiency of drilling operations in lithologically variable and geomechanically uncertain environments.
About the Authors
List of references
Maurer, W. C. (1962). The “Perfect-Cleaning” Theory of Rotary Drilling. Journal of Petroleum Technology,
(11), 1270–1274.
Teale, R. (1965). The Concept of Specific Energy in Rock Drilling. International Journal of Rock Mechanics
and Mining Sciences, 2(1), 57–73.
Toshniyozov L.G., Toshov J.B., Liu Songyong, Research of the stress-strain state of the rock in contact with
the elements of the drill bit during drilling // Technical science and innovation Article 17, Vol. 2020, Issue 3, (2020).
- 112-121
Bourgoyne, A. T., & Young, F. S. (1974). A Multiple Regression Approach to Optimal Drilling and Bit
Performance (SPE Paper No. 4926). Society of Petroleum Engineers.
Kalantari, S., Hashemalhosseini, H., & Baghbanan, A. (2018). Estimating rock strength parameters using
drilling data. International Journal of Rock Mechanics and Mining Sciences, 104, 45–52.
https://doi.org/10.1016/j.ijrmms.2018.02.005
Ayoub, M., Goh, S., Diab, D., & Ahmed, Q. (2017). Modeling of Drilling Rate of Penetration Using Adaptive
Neuro-Fuzzy Inference System. International Journal of Applied Engineering Research, 12(22), 12880–12891.
Hegde, C., & Gray, K. E. (2017). Use of Machine Learning and Data Analytics to Increase Drilling Efficiency
for Nearby Wells. Journal of Natural Gas Science and Engineering, 40, 327–335.
https://doi.org/10.1016/j.jngse.2017.02.010
Al Hamlawi, I. T., et al. (2021). MSE Based Drilling Optimizer Project for Large National Drilling Contractor.
In Proceedings of the SPE Annual Technical Conference and Exhibition, Abu Dhabi. Paper D032S234R001.
Стеклянов Б.Л., Штейнерт В.А., Рахимов Р.М. Динамические составляющие породоразрушающих
бурильных инструментов / «Steinert Industries GmbH & Co. KG», №6, - 2008, С. 19-21.
Тошов Ж. Б. Повышение эффективности бурения взрывных скважин на карьерах за счёт разработки
нового комбинированного долота: дис. … канд. техн. наук: 05.15.11 – Физические процессы горного
производства / Навоийский гос. горный ин-т. – Навоий, 2007. – 138 с.
Гурина Е. Г., Ключников Н. Ю., Поспелов А. Н. (2023). Гибридные модели для оценки аварийности
при бурении на основе телеметрии и машинного обучения. // Сборник научных трудов ТПУ. — №2. — С. 45–
OnePetro Technical Paper (2025). Hybrid Physics-ML Models for Real-Time ROP Prediction. // SPE/IADC
Drilling Conference & Exhibition. https://www.onepetro.org/conference-paper/SPE-215400-MS
Willard J., Jia X., Xu L., Steinbach M., Kumar V. (2021). Integrating Physics-Based Modeling with Machine
Learning: A Survey. // arXiv preprint arXiv:2003.04919.
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.